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CHAPTER 1

INFORMATION-THEORETIC GENE
SELECTION IN EXPRESSION DATA

PATRICK E. MEYER AND GIANLUCA BONTEMPI
MACHINE LEARNING GROUP,

COMPUTER SCIENCE DEPARTMENT,

UNIVERSITE LIBRE DE BRUXELLES, BELGIUM.

{PMEYER,GBONTE} @ULB.AC.BE

1.1 INTRODUCTION

Genome-wide patterns of gene expression represent a snapshot of the state of a cell
in a given condition. Using different snapshots, taken under different conditions, it
becomes possible to build statistical models that can efficiently classify and predict
new snapshots. A typical application of such techniques consists in discovering new
molecular signatures of tumor cells for diagnostic and prognostic purposes [52, 53].
However, the detection of functional relationships between genes as well as the design
of effective models from expression data is a major statistical challenge, mainly
because of the data dimensionality. Expression datasets are typically characterized
by a low number of noisy samples together with a high number of variables. As
a result, even a simple predictive model such as a linear regression cannot be used
without eliminating irrelevant and redundant variables as a first step [30]. A number
of experimental studies [28, 6, 46] have shown that the elimination of irrelevant
and redundant variables as well as the selection of synergetic variables [35, 24] can
dramatically increase the predictive accuracy of models built from data. Moreover,
variable selection can decrease future measurements and storage requirements [20]
while increasing the intelligibility of a model.

Please enter \offprintinfo{(Title, Edition)}{ (Author)}
at the beginning of your document.



In order to derive efficient methods of variable selection, formal definitions of
relevance, redundancy and synergy of variables have been defined. Information
theory, a theory introduced for data transmission and signal compression [48] and
widely used in areas such as statistics, physics, economics or biology, provides a
particularly adapted framework for measuring, quantifying and defining variable
interactions [38].

The outline of this chapter is the following. Section 1.2 introduces the curse of
dimensionality. Section 1.3 focuses on widely used variable exploration strategies.
Section 1.4 intoduces the information-theoretic framework. Section 1.5 recalls vari-
able selection techniques which have been proposed in the literature. Section 1.6
introduces estimation techniques that can be used for implementing the selection
strategies on the basis of observed data.

1.2 THE CURSE OF DIMENSIONALITY

A natural question arises when it comes to make experiments or measurements: “how
many experiments do I need in order to obtain a clear signal in my data?” or even
“how many genes can I select when I have made 100 experiments”?

Although the question cannot be answered directly, it is easy to give an intuition
behind “the curse of dimensionality”. Most expression datasets provide continuous
measurements of gene activities. However, in order to illustrate the problem, we will
consider discretized variables, such as binary variables, i.e., genes that can be either
“on” or “off”. Binary variables have been studied extensively in statistics and the
question that was raised at the time was “how many tosses of a coin should I make in
order to assess if the coin is fair?” Although genes and coins are very different entities
of a physical world, statisticians view them both as random variables. The more
experiments you have the more confident you are in your estimate of the probability
distribution of arandom variable. Let us assume that you need an average of 5 samples
per possible event (“on” or “off”) in order to have a good estimate of the distribution
of a random variable, that is to say you require ten samples in order to assess if a
coin is fair. Now if you consider a joint distribution of two binary variables you
are estimating a distribution that has 4 distinct possibilities (genel:”on” gene2:”on”,
genel:”on” gene2:”off”, genel:”off” gene2:”on”, genel:”off” gene2:”off”), you then
require 20 samples. As you are estimating a joint distribution of 4 ternary variables
(“on” “off or “in between”), you have 3 x 3 x 3 x 3 = 81 possibilities. Hence with
the requirement of 5 samples by possibilities, you now need 405 samples to have an
estimate of a joint distribution of only 4 ternary variables. In general, if you consider
estimating a d-variate probability distribution of variables, each one discretized in p
bins, and you need an average of 5 samples per bin, then you need 5% p? samples. You
can however reduce the number of samples required by decreasing your estimation
accuracy requirements (less than an average of 5 samples by possibilities) or by
making more constraining assumptions on the joint distribution of these variables
(such as assuming that some events are unlikely).
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1.3 VARIABLE SELECTION EXPLORATION STRATEGIES

Let us consider the following problem: given d a number of variables to select, is

there an algorithm that can select the optimal subset of variables of a given size?
Unfortunately, various results, like the theorem by Cover and Van Campenhout

[14], show that finding the optimal subset of size d among n variables requires to test

all ( d ) combinations of subsets. However, this is impossible in practice, since

it would take too much time to compute all of them. Hence, search heuristics have
been used to reach a good predictive subset of variables.

d
having size d. Variable selection can be seen as a combinatorial optimization problem
[28] which depends on:

Let us denote A the search space of ( " ) subsets of random variables of X

1. a method of exploring the space A (including the starting point and the stop
criterion),

2. an evaluation function returning a measure of accuracy.

More formally the problem is: given n input variables X and a performance measure
F: A — R, find the subset Xg C X which maximizes the performance,

X3 = arg Inax F(Xs) (1.1)
S

Exploration strategies can be classified into three main categories of combinatorial
optimization algorithms namely optimal search, stochastic search and sequential
search (see [21], chapter 4).

1. Optimal search strategies include exhaustive search and branch-and-bound
methods [21]. Their high computational complexity makes them impracticable
with a high number of inputs and, for this reason, they are not discussed in this
work.

2. Stochastic search strategies are also called randomized or non-deterministic
[45] because two runs of these methods (with the same inputs) will not neces-
sarily lead to the same result [16]. These methods explore a smaller portion of
the search space A by using rules often inspired by nature. Some examples are:
simulated annealing [16], tabu search [16] and genetic algorithms [55, 16].

3. Sequential search strategies are also called deterministic heuristics [45]. These
methods are widely used for variable selection [17, 43, 18, 9]. Most of them
use a neighbor search (two subsets are said neighbors if they differ from one
variable) to discover a local optimum. Some examples are: forward selection
(see Section 1.3.1), backward elimination (see Section 1.3.2), bi-directional
search (see Section 1.3.3).



Because of their simplicity and their wide adoption in the variable selection com-
munity, we focus here on the three main sequential strategies namely the forward
selection, the backward one and the bi-directional one.

In the following, we denote by X the complete initial set of variables and by
XMETH ¢ X € A = {1,2,....n} the variable selected at each step by the
method M ETH. Xg and Xy are the set of selected variables and the set of
remaining variables respectively. Hence, at each step X = {Xg, Xr}. X; or X;
usually denotes a variable in Xy or in Xg, respectively.

1.3.1 Forward Selection search

Forward Selection [9, 28] is a sequential search method that starts with an empty set
of variables, Xg = ¢. At each step, it selects the variable X that brings the best
improvement (in terms of a given evaluation criterion F'(-). A pseudo-code of the
method is given in Algorithm 1.1. As a consequence of the sequential process, each
selected variable influences the evaluations of the following steps.

This search has been widely used in variable selection, (see [9, 6, 28]). The forward
selection algorithm selects a subset of d < n variables in d steps and explores only
2% (n — i) subsets.

Howeyver, this search has some weaknesses:

1. two variables that are synergetic (i.e., highly relevant only once taken together,
see 1.4.3) appear as not relevant if taken individually and are as consequence
ignored by this procedure,

2. selecting the best variable at each step does not mean selecting the best subset.
Indeed, suppose that we have the following situation:

Y = f(X5,X4,X3) + N(O,Ul) = f(Xl,XQ) + N(O, 0'2) (12)

where N (u, o) denotes a normally distributed noise with mean p and variance
o. If we have, the following order of univariate relevance:

rel(Xs) > rel(Xy) > rel(Xa) > rel(Xy) > rel(Xs) (1.3)

and
01 > 09 (1.4)

the best subset should be X7 o = {X7, X5} because the variance of the noise
is smaller. Also, there are less variables in the latter combination, which
usually lead to a lower number of parameters to estimate in a model. How-
ever, the forward selection algorithm will, in many cases, select the subset
X345 = {Xs5,X4,X3}. Indeed, it first selects X5 because X5 is the most
relevant variable. Given X35, the best improvement can be brought by X4, and
given { X5, X4}, X3 can be the best variable to select.
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Algorithm 1.1

Inputs: input variables X, the output variable Y, a maximal subset size
d >0, a performance measure F(-) to maximize

Xg:=¢

Xp:=X

while (|Xg| < d)
maxscore (= —o0

for all the inputs X; in the search space Xp
Evaluate F'(Xg;) for the variable X; with Xg the subset of
selected variables.
it ( F(Xg,;)> maxscore)

X=X,
mazxscore:= F(Xg ;)
end-if
end-for
Xs = Xs¢
XR = Xth
end-while

Output: the subset Xg

1.3.2 Backward Elimination search

Backward elimination [9, 28, 39] is a search method that starts by evaluating a subset
containing all the variables Xg = X and progressively discards the least relevant
variables. For instance, at the second step, the method compares n subsets of n — 1
inputs. The variable X; associated with the least favorable improvement of accuracy
is eliminated. The process is repeated until it yields the chosen number of inputs d
(see Algorithm 1.2). This method does not suffer from the risk of ignoring a pair of
complementary variables as it is the case for forward selection.

Algorithm 1.2

Inputs: input variables X (the input space), the output variable
Y, a minimal subset size d > 0, and a performance measure F'(-)
to maximize

Xg:=X
while (| Xg| > d)
worstscore := 00
for all inputs X; in the subset Xg
Evaluate F'(Xg_j;), with all inputs of the subset Xg without

X
if ( F(Xs—_j;)<worstscore)
XtZZ Xz
worstscore:= F(Xg_j)
end-if
end-for
XS = XS—t

end-while
Output: the subset Xg



1.3.3 Bi-directional search

The strengths of the forward selection and of the backward elimination can be
combined in different manners.

As an example, let 26 random variables constitute the search space and be denoted
by letters of the alphabet. Let the best subset of four variables be denoted by the
letters { B, E, S, T'}. The forward and the backward approaches can be combined in
different ways:

e by using a backward elimination on a subset selected with a forward search
[9].
If a forward selection has selected the subset {C, B, E, S, T, D, F, G}, then,
we can use a backward elimination in order to keep the most important variables
of the subset, and reach the subset {B, E, S, T'}.

e by performing a stepwise approach [39, 9]: At each step, choose the best action
between eliminating a variable or selecting one.
In our example, we may at some stage have selected the subset {E, A, S, T'}.
The stepwise algorithm chooses between adding a variable that brings the
best improvement {B, E, A, S, T} or eliminating the less important variable

(E,S,T).

e by using sequential replacement [39, 9]: This procedure consists in replacing
k > 1 variables at each step.
In our example, we can imagine at some stage having the subset { P, E, S, T}
that becomes the subset { B, F, S, T} after an iteration. The pseudo-code of
the algorithm for k = 1 is described in Algorithm 1.3.

Algorithm 1.3

Inputs: a selected subset of inputs Xg, the set of remaining
variables Xpg, the output variable Y, and a performance measure

F(-) to maximize

do

for all inputs X; in the remaining variables Xp
Evaluate F(Xg,;)

end-for

X1 := argmaxx, F(Xg,;)

for all for all inputs X; in the subset Xg
Evaluate the F(Xg_j)

end-for

Xtz == argmaxy,; F(Xs—j)

Xs = X(s,t1)—t2

Xpr = X(Rr12)-11



RELEVANCE, REDUNDANCY AND SYNERGY 7

end-do while X1 # Xyo

Output: the subset Xg

1.4 RELEVANCE, REDUNDANCY AND SYNERGY

In order to improve the resolution of the two variable selection problems stated above,
i.e., subset estimation and search of good combination, many variable selection
criteria have been developped in the past decade. These criteria focus on 1) select
relevant variables without having to estimate accurately the full joint distribution of
a subset 2) guide the heuristic search in the space of combinations.

These variable selection criteria have been built around three main notions: rele-
vance, redundancy and synergy. These three notions can be efficiently formulated in
an information-theoretic framework that is introduced in the following subsections.
For simplicity, we consider here discrete variables though the theory can be extended
to the continuous variable case.

1.4.1 Relevance

In this section entropy, conditional entropy and mutual information are defined.
These notions will be intensively used in the following in order to define relevance,
redundancy and synergy.

The entropy [10] of a discrete random variable Y with probability mass function
p(Y) is defined by:

1
HY) = Hp(Y)) = - y;p@/) log p(y) = By [mg p(y)] (1.5)

Note that this definition remains valid for a discrete random vector (i.e. a subset
of random variables).

The usual unit of the entropy is the bit. However, other units are sometimes chosen
for this measure. The unit depends on the base taken for the logarithm of Eq 1.5,
base 2 for bit, base 10 for ban. The deciban (one tenth of a ban) is also known as a
useful measure of belief since 10 decibans correspond to an odds ratio of 10:1; 20
decibans to 100:1 odds, 30 decibans to 1000:1, etc [25]. The natural logarithm (base
e) is increasingly used for computational reasons and in this case the unit is the nat.

The conditional entropy of Y given X is,

H(Y|X) = H(Y, X) - H(X) (1.6)

This quantity measures the uncertainty of a variable once another one is known.
The reduction of entropy due to conditioning can be quantified by a symmetric
measure called mutual information [10]:

HY)-HY|X)=IY;X)=I(X;Y)=H(X) - HX[Y) (1.7



The mutual information between X and Y is,

I(v:X) =Y Y pla.y) log( 2T, 1) ) (1.8)

S5 p(x)p(y)

Mutual information can be also viewed as a divergence between the joint distri-
bution p(X, Y") and the product distribution p(X )p(Y") [10] or between the marginal
distribution p(X) and a conditional distribution p(X|Y"). As a consequence, when
two variables are independent, their mutual information is null and the higher the
dependency between the variables, the higher the value of the mutual information.
When the two variables are identical, this measure reaches its maximum and is equal
to the entropy of the variable, i.e., [(X; X) = H(X).

The mutual information is a natural measure of relevance since it quantifies the
dependency level between random variables. The use of mutual information as
relevance measure traces back to [11]. Later, [50] introduced a selection criterion
called the information bottleneck which uses also mutual information as a relevance
measure. [29] defines the relevance of a set X g to an output variable Y as the mutual
information I(Xg;Y).

As a result, the relevance of an input variable X; knowing a set Xg to an output
variable Y is the gain of relevance resulting from using X; additionally to Xg:

I(X;Y|Xs) =1({Xs, X; 1Y) — I(Xs;Y) (1.9)

This quantity is precisely the conditional mutual information [10]. Its normalized
version (i.e. constrained to range between zero and one) has been introduced by [5]
in a variable selection procedure.

Note that it is possible to increase the information of a variable with another by
appropriate conditioning, as shown in the following example.

Let Y and X be two independent random variables and Z be a random variable
defined as a deterministic function of Y and X (see Eq. 1.10).

X—>Z+Y (1.10)

As X and Y are independent, we have I(X;Y) = 0 and since Z = f(X,Y), we
obtain I(X;Y|Z) > 0. As aresult, the conditional mutual information is higher than
the mutual information, i.e. I(X;Y|Z) > I(X;Y), which means that conditioning
can increase relevance.

1.4.2 Redundancy

According to [54], aredundancy measure should be symmetric, non-negative and non-
decreasing with the number of variables. The monotonicity is justified by the fact that,
unlike relevance, the amount of redundancy of a variable can never decrease when
more variables are added. As a result, [54] proposed to use multiinformation [34].
This measure used in [49] is also called total correlation in [23]. The multiinformation
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between n sets of random variables X1, Xo, ..., X, is,
R(Xi;..; Xp) =Y H(X;) — H(X1, X2, ..., Xp,) (1.11)
i=1

Note that in the two-variables case,
R(Xi; X;) = H(X;) + H(X;) — H(X;, X;) = I(X;; X;) (1.12)

While the relevance measure concerns the relation between inputs and outputs,
the bivariate redundancy measure applies exclusively to input variables.

1.4.3 Synergy

Synergy and redundancy are two sides of a coin that has been called variable in-
teraction.The definition of variable interaction in information-theoretic terms can be
found in the seminal paper of [34] and, more recently, in [23].

The interaction among n sets of random variables, X, X», ..., X,, is defined as:

C(X1; Xo;i Xp) =Y > (—1)* 1 H(Xg) (1.13)
k=1SC{1,....,n}:|S|=k

Given a random vector X and a random variable Y the link between mutual
information /(X;Y") and interaction information is made explicit by the following
formula from [29].

I(X5Y) =34 C(X3Y) — Zi,jeA C(X:; X;;Y)
Fo+ (=D)"TO(X; X5 X3 Y)

with C(X;;Y) = I1(X;;Y).

In plain words, mutual information can be seen as a series where higher order
terms are corrective terms that represent the effect of the multivariate interaction.
In most cases, the measure of interaction is positive and it indicates that the n sets
of variables share a common information (redundancy). However, interaction can
be negative. In the latter case, the variables are said to be complementary [35] or
synergetic [2].

The synergy effect was mentioned in several variable selection papers [28, 20,
23, 24] and has been explicitely used in variable selection algorithms only recently
[29, 35, 59].

In particular, the synergy between two random features X; and X; and the output
Y (n=3)

(1.14)

—O(Xi; X;3Y) = —H(X;) — H(X;) - H(Y)
+H(X;, X;)+ H(X;,Y)+ H(X;,Y)-H(X;,X;,Y) (1.15)
= I(X;;;Y) = (I(Xi;Y) + 1(X;5Y))
measures, the gain resulting from using the joint mutual information of two variables
X; and X; instead of the sum of the univariate informations. It is well-known,
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indeed, that the joint information of two random variables, i.e., I(X; ;;Y) can be
higher than the sum of their individual information I(X;;Y") and I(X;;Y).

An example of synergy is Example 1.4.1 where conditioning increase relevance.
Another known illustration of this phenomenon is the XOR problem as pointed out
by [28]:

‘Xl ‘ Xo ‘ Y:X1@X2‘

0

1

1

0

One can see that X and X5 have a null relevance individually, i.e. 1(X;Y) =0,
I(X3;Y) = 0, whereas together X 5 has a maximal relevance, i.e. I(X12;Y) =
H(Y') > 0. Synergy explains why a combination of apparently irrelevant variables
can perform efficiently in a learning task. It also gives an intuition behind the
Cover and Van Campenhout theorem [14] mentionned earlier, that requires to test all
combinations of subset to find the optimal one.

1.5 INFORMATION-THEORETIC FILTERS

Variable selection methods based on mutual information are also called information-
theoretic filters.

Let us start by stating the objective of an information-theoretic filter:

Given a training dataset D,,, of m samples, an output variable Y, n input variables
X and an integer d < n, find the subset X C X of size d that maximizes the mutual
information I(Xg;Y).

In other words, the objective of filters variable selection (for a given d), is to find
the subset Xg, with | Xg| = d, such that:

XMz I(Xs:Y 1.16
4 arg X (Xs;Y) (1.16)

This is a particular case of (1.1), where the evaluation function F'(Xg) is the
mutual information I(Xg;Y). We assume that the number of variables d has been
determined by some a priori knowledge or by some cross-validation techniques. As
filters often rank the variables according to their relevance measure, variables can
be added one by one in a predictive model, until the cross-validated performances
decrease. This procedure allows to reach an adequate number of variables for a given
predictive model. Other strategies can be adopted such as the information bottleneck
[50], Bayesian confidence on parametric estimations [27] or resampling techniques
[19].
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In the following, we review the most important filter selection methods found in
the literature which are based on information theory. We present the algorithms by
stressing when and where the notion of relevance, redundancy and synergy are used.

1.5.1 Variable Ranking

This method variable ranking (RANK) returns a ranking of variables on the basis of
their individual mutual informations with the output. This means that, given n input
variables, the method first computes n times the quantity [(X;,Y), i = 1,...,n,
then ranks the variables according to this quantity and eventually discards the least
relevant ones [17, 3].

The main advantage of this method is its low computational cost. Indeed, it
requires only n computations of bivariate mutual information. The main drawback
derives from the fact that possible redundancies between variables are not taken into
account. Indeed, two redundant variables, yet highly relevant taken individually,
will be both well-ranked. On the contrary, two variables could be synergetic to the
output (i.e., highly relevant together) while being poorly relevant once each taken
individually. As a consequence, these variables could be badly ranked, or even
eliminated, by a ranking filter.

1.5.2 Fast Correlation Based Filter

Fast Correlation Based Filter (FCBF) is a ranking method combined with a redun-
dancy analysis which has been proposed in [58]. The FCBF starts by selecting
the variable (in the remaining variables X r) with the highest mutual information,
denoted by X/"“BF Then, all the variables which are less relevant to Y than redun-
dant to X/ “B¥ are eliminated from the list. For example, X; is removed from the
remaining variable set X if

I(X;; XFOPEY > 1(X;;Y)

At the next step, the algorithm repeats the selection and the elimination steps. The
procedure stops when no more variable remains to be taken into consideration.
In other words, at each step, the set of selected variables X g is updated with the

variable

XFOBE — arg max. I(X;Y) (1.17)

and the set of remaining variables X i is updated by removing the set
{Xie Xp_i: I(X5Y) < I(Xi; X[OPM)} (1.18)

This method is affordable because a few (less than n?) evaluations of bivariate
mutual information are computed. However, although the method addresses redun-
dancy, it presents the risk of eliminating relevant and synergetic variables. Another
drawback of this method is that it does not return a complete ranking of the variables
of the dataset. In [58], this approach is shown competitive with two filters [31, 1].
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Note that in [58], a normalized measure of mutual information called the symmetrical
uncertainty is used, i.e. SU(X,Y) = #ﬁgy) This measure helps to improve
the performances of the selection by penalizing inputs with large entropies.

1.5.3 Backward elimination and Relevance Criterion

Let X3 C X be the target subset, i.e., the subset Xg of size d, that achieves the
maximal mutual information with the output (1.16). By the chain rule for mutual
information [10],

I(X;Y) = [(X2Y) + [(XP, Y| X5") (1.19)

where Xp = X _g is the set difference between the original set of inputs X and the
set of variables X g selected so far.

The backward elimination (using mutual information) [47] starts with Xg = X
and, at each step, eliminates from the set of selected variable X g, the variable X ;’“k
having the lowest relevance on Y,

Xbok = arg min I(X;;Y|Xs—; (1.20)

g g P (XY i)
In other words, X Jl?‘w"’ is an approximation of X»'** in (1.19). The approximation
is exact for a subset size d = n — 1 of one variable less than the complete set. The
elimination process is then repeated until the desired size is reached. However, this
approach is intractable for large variable sets since the beginning of the procedure

requires the estimation of a multivariate density that includes the whole set of variables
X.

1.5.4 Markov Blanket Elimination

The Markov blanket elimination [30] consists in approximating I(X;;Y|Xg_;) in
(1.20) by I(X;; Y| Xy, ) with Xy, C Xs_; a subset of variables, i.e. the Markov
blanket, having limited fixed size k. The algorithm proceeds in two phases. First,
for every variable X in the selected set X, k variables X/, are selected among
the variables Xg_;. Second, the least relevant variable X jM (conditioned on the
selected subset X);, € Xg_;) is eliminated, i.e., Xg = X5\ XJMB.

X]MB :argXI]r.lei)I}S I(X;; Y| Xn,) (1.21)

The process is repeated until the selected variable set X g contains no more ir-
relevant and redundant variables, or when the desired subset size is reached. The
method is named from the fact that X, is an approximate Markov blanket. In
[30], the Pearson’s correlation coefficient [26] is used in order to find the k variables
most correlated to the candidate X ;. These k variables are considered as the Markov
blanket X, of the candidate X;. In this way, only linear dependencies between
variables are considered. However, more complex functions can make the algorithm
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very slow. In fact, finding a Markov blanket is itself a variable selection task. As a
result, this method is adapted to large dimensionality problems only with very strong
assumptions on the structure of Xp;.

1.5.5 Forward Selection and Relevance Criterion

A way to sequentially maximize the relevance (REL) quantity I(Xg;Y") in (1.16), is
provided by the chain rule for mutual information [10]:

I(Xg1Y) =1(Xs;Y) + (X3 Y[ Xs) (1.22)

where X g = X ; is the updated set of variables. Rather than maximizing the left-
hand side term directly, the idea of the forward selection combined with the relevance
criterion consists in maximizing sequentially the second term of the right-hand term,
I(X;;Y|Xs). In other words, the approach consists in updating a set of selected
variables X g with the variable X /£ featuring the maximum relevance.

In analytical terms, the variable X P~ returned by the relevance criterion at each
step is,

REL __ .
X0 = arg max {I(X;;Y|Xs)} (1.23)

where X p = X _ g is the difference between the original set of inputs X and the set of
variables X g selected so far. This strategy prevents from selecting a variable which,
though relevant to Y, is redundant with respect to a previously selected one. This
algorithm has been used in [5, 3, 7, 47]. In [5], a normalized version of relevance is
used.

Although this method is appealing, it presents some major drawbacks. The
estimation of the relevance requires the estimation of large multivariate densities. For
instance, at the d-th step of the forward search, the search algorithm requires n — d
evaluations, where each evaluation requires in turn the computation of a (d + 1)-
variate density. It is known that for a large d, the estimations are poorly accurate
and/or computationally expensive [44]. In particular in the small sample settings
(around one hundred), having an accurate estimation of large (d > 3) multivariate
densities is difficult (see 1.2). For these reasons, the recent filter literature adopt
selection criteria based on bi- and trivariate densities at most.

1.5.6 Forward Selection and Conditional Mutual Information
Maximization criterion

The Conditional Mutual Information Maximization criterion (CMIM) approach [18]
proposes to select the variable X; € X whose minimal relevance I(X;;Y|X;)
conditioned to each selected variable taken separately X; € Xg, is maximal. This
requires the computation of the mutual information of X; and the output Y, condi-
tioned on each variable X; € X previously selected.

Formally, the variable returned according to the CMIM is
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XEMIM in I(X;Y|X; 1.24
i arg max { min (X Y]X;)} (1.24)
A variable X; can be selected only if its information to the output Y has not been
caught by an already selected variable X ;.
The CMIM criterion is an approximation of the relevance criterion,

REL __ .
X" = arg max {I(X;;Y]Xs)}

where I(X;; Y| Xs) is replaced by minx e x5 (I(X3; Y[ X;)).

[18] shows experiments where CMIM is competitive with FCBF [58] in selecting
binary variables for a pattern recognition task. This criterion selects relevant vari-
ables, avoids redundancy, avoids estimating high dimensional multivariate densities
and does not ignore complementarity two-by-two. However, it does not necessar-
ily select a variable complementary to the already selected variables. Indeed, a
variable that has a high negative interaction to the already selected variable will be
characterized by a large conditional mutual information with that variable but not
necessarily by a large minimal conditional information. In the XOR problem, for
instance, the synergetic variables have a null relevance taken alone. In that case,
minx; exs [(X;;Y|X;) = 0 and CMIM would not select those variable.

1.5.7 Forward Selection and Minimum Redundancy - Maximum
Relevance criterion

The Minimum Redundancy-Maximum Relevance (mnRMR) criterion has been pro-
posed in [44, 51, 43] in combination with a forward selection search strategy. Given
a set Xg of selected variables, the method updates X g with the variable X; € Xg
that maximizes v; — z;, where v; is a relevance term and z; is a redundancy term.
More precisely, v; is the relevance of X; to the output Y alone, and z; is the average
redundancy of X to each selected variables X; € Xg.

v; = I1(X;;Y) (1.25)
S > I(XiX;) (1.26)
Z; = |XS| 1y <Xg *
X;eXs
MRMR __ L
X; = arg erlea)jé(R{vl Zi} (1.27)

At each step, this method selects the variable which has the best trade-off between
relevance and redundancy. This selection criterion is fast and efficient. At step
d of the forward search, the search algorithm computes n — d evaluations where
each evaluation requires the estimation of (d + 1) bi-variate densities (one for each
already selected variables plus one with the output). As a result, MRMR avoids the
estimation of multivariate densities by using multiple bivariate densities.
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A justification of MRMR given by the authors [44] is that

I(X:Y) = H(X)+ H(Y) - HX,Y) (1.28)
with
R(X1; X5 Xp) = Y H(X,) — H(X) (1.29)
i=1
and
R(X1; Xo; s X Y) = Y H(X;) + H(Y) — H(X,Y) (1.30)
i=1
hence
I(X;Y)=R(X1; Xo;..; X3 Y) — R(X1; Xo5 .5 X)) (1.31)
where,

e the minimum of the second term R(X; X5; ...; X,,) is reached for independent
variables since, in that case, H(X) = >, H(X;) and R(X1; Xo;..; X;) =
>, H(X;) — H(X) = 0. Hence, if a subset of variables Xg is already
selected, a variable X; should have a minimal redundancy I(X;; X¢) with the
subset. Pairwise independency does not guarantee independency. However,
the authors approximate 7(X;; Xg) with ﬁ > jes L(X X5).

e the maximum of the first term R(X7; Xo; ...; X,,; Y) is attained for maximally
dependent variables.

Qualitatively, in a sequential setting where a selected subset X g is given, indepen-
dence between the variables in X is reached by minimizing ﬁ > X,eXs (X3 X5) >~
I(X;; Xg) and maximizing dependency between the variables of X and of Y, i.e.,
by maximizing I(X;;Y).

Although the method addresses the issue of bivariate redundancy through the term
z;, it does not capture synergy between variables. This can be ineffective in situations
like Example 1.4.1 where, although the set { X, Z} is very relevant for predicting Y,
once X has been selected Z will not since

1. the redundancy term z; is large due to the redundancy of X and Z,

2. the relevance term v; is small since Z alone is not relevant to Y.

Nonetheless MRMR has been sucessfully used for network inference tasks when
coupled with forward, backward and bi-directional searches [36, 37].
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1.5.8 Forward Selection and Minimum Interaction - Maximum
Relevance criterion

The Minimum Interaction-Maximum Relevance (mIMR) criterion, also called Double
Input Symmetrical Relevance (DISR) in a previous version, has been proposed in
[35, 8] in combination with a forward selection search strategy. Given a set Xg of
selected variables, the method updates X g with the variable X; € Xy that maximizes
v; — w;, where v; is a relevance term and w; is an interaction term. As in mRMR, v;
is the relevance of X; to the output Y alone, however in mIMR the second term w;
is an average interaction of X; to each selected variables X; € Xg.

i = C(Xi XY 1.33
" ) (13
X;eXs
mIMR __ s
X! = arg Xr?e%)((R{vZ w; } (1.34)

At each step, this method selects the variable which has the best trade-off between
relevance and interaction. At step d of the forward search, the search algorithm
computes n — d evaluations where each evaluation requires the estimation of a
bivariate density plus d trivariate ones. Assuming normally distributed variables,
trivariate densities can even be computed with bivariate terms, leading to much faster
selection of variables. This criterion eliminates redundant variable (because they are
penalized by a positive w;) but also tends to select synergetic variable (because of
their negative w;) while avoiding the estimation of multivariate densities.

A theoretical justification of mIMR given by the authors is that

S XY (1.35)

I(Xs;Y) >
< (21 > X;€Xs X;€X5s

with

= > C(Xi;X;Y)
X;eXs
(1.36)

1.5.9 A theoretical comparison of filters

The presented criteria can be analyzed under different perspectives. We stress in
Table 1.1,

1. which issues, among relevance, redundancy and synergy, are taken into ac-
count,
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2. the ability of a criterion to avoid the estimation of large multivariate densities
and
3. whether it returns a ranking of variables.

Table 1.2 reports a comparative analysis of the different techniques in terms of
computational complexity of the evaluation step.

\ methods: | RANK | FCBF | REL | CMIM | mRMR | mIMR |
‘ Select Relevance ‘ Yes ‘ Yes ‘ Yes ‘ Yes ‘ Yes ‘ Yes ‘
‘ Eliminate Redundancy ‘ No ‘ Yes ‘ Yes ‘ Yes ‘ Yes ‘ Yes ‘
| 2-variablessynergy | No | No | Yes | No | No | Yes |
| Avoid Multivariate Density | Yes | Yes | No | Yes | Yes | Yes |
\ Return Ranking | Yes | No | Yes | Yes | Yes | Yes |

Table 1.1  Comparison of the properties (relevance, redundancy and synergy, ability to
avoid estimation of large multivariate densities, ability to rank the variables) that are
taken into account in each selection criterion.

| variable evaluation: | RANK | REL | CMIM | mRMR | mIMR

‘ calls of mutual information ‘ 1 ‘ 1 ‘ d ‘ d+1 ‘ d+1

‘ k-variate density ‘ 2 ‘ d+1 ‘ 3 ‘ 2 ‘ 3

‘ computational cost ‘ o(C) ‘ O(d x C) ‘ Oo(d x C) ‘ O(d x C) ‘ O(d x C) ‘

Table 1.2 The computational cost of a variable evaluation using rel, cmim, mrmr,
mimr with C being the cost of a mutual information estimation.

We observe from Tables 1.2 and 1.1 that the mIMR criterion avoids redundant
variables, multivariate density estimation, but selects synergetic variables (up to the
second order), at the same computational cost than CMIM and mRMR. Numerous ex-
perimental studies have shown the performances of mRMR and mIMR on expression
datasets [38, 8].

1.6 FAST MUTUAL INFORMATION ESTIMATION

In the previous section, Table 1.2 shows that the computational complexity of most
filters strongly depends on the cost of estimation of bi- and trivariate mutual infor-
mation. We present here two very simple estimators that have shown good trade-off
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between computational load and accuracy in a variable selection purposes [38, 41].
However, it should be noted that most filters exposed above could be used with other
estimators or even with other evaluation functions/ similarity measures than mutual
information.

Mutual information computation requires the determination of three entropy terms
(see Section 1.4.1):

I(X;Y)=H(X)+ H(Y) - H(X,Y)

An effective entropy estimation is then essential for computing mutual information.
Entropy estimation has gained much interests over the last decade[13] and most
approaches focus on reducing the bias inherent to entropy estimation.

For microarray datasets, bias reduction should not be the only criterion to choose an
estimator. Bias reduction should be traded with speed/computational complexity of
the estimator. Indeed, in variable selection and network inference, mutual information
estimation routines are expected to be called a huge number of times and used
for estimating tasks with the same number of variables and the same amount of
samples. Since filters consists mainly in comparing information-theoretic quantities,
the correct ranking of the estimated quantities is much more important than the correct
estimation of the quantities. A similar conclusion has been reached in [33, 41]. We
refer the reader to [42, 13, 4, 40, 12] for alternative approaches of entropy and mutual
information estimation.

1.6.1 Discretizing variables and empirical estimation

We describe here the equal frequency discretization since it has been reported in [57]
Meyer as one of the most efficient discretization method.

The equal frequency discretization scheme consists in partitioning the interval
[a, b] into |X;| intervals, each having the same number, m/|X;|, of data points [15,
56, 32]. As a result, the intervals can have different sizes. If the |;| intervals have
equal frequency, then the computation of entropy is straightforward: log ﬁ

The value of the number of bins |X;| controls a trade-off. With a too high |X;],
each bin will contain a few number of points, hence the variance is increased, whereas
a too low | X;| will introduce a too high loss of information [10]. A classical choice
of | X;| is given by the samples square root y/m [56]. One justification given for that
choice is that the ratio m/|X;| becomes m/\/m = +/m, hence there are as many
bins as the average number of points per bin. Note also, that when estimating the
entropy of a bivariate distribution where each variable has /m bins, the number of
bins of the joint distribution is upper-bounded by |X;| < /m X v/m = m. Asa
result, the empirical entropy estimator should not be too biased when combined with
this choice of | X;].

In order to compute the joint entropy of two discrete variables, the empirical
estimator can be used. The empirical entropy estimator (also called “plug-in”, “max-
imum likelihood” or “naive”, [42]) is simply the entropy of the empirical distribution.




FAST MUTUAL INFORMATION ESTIMATION 19

#) | #0)

m m

H"P(X)=- )"

rzeX

(1.37)

where #(z) is the number of data points having value z. Because of the convexity of
the logarithmic function, underestimates of p(x) cause errors on E[m] that are
larger than errors due to overestimations. As a result, entropy estimators are biased
downwards, that is,

E[H*™(X)] < H(X). (1.38)

It has been shown in [42] that

1. the variance of the empirical estimator is upper-bounded by a term (%)
which depends only on the number of samples

2. the asymptotic bias is — M;lin_ll and depends on the number of bins | X'| [42]. As
|X| > m, this estimator can still have a low variance but the bias can become

very large [42].

The computation of H¢"?(X) has an O(rn) complexity cost.
The Miller-Madow correction is given by the following formula which is the
empirical entropy corrected for the asymptotic bias,

(X[ -1

gmm X) = I{Iemp X
(x) = fremn(x) 4 12

(1.39)
where |X| is the number of bins with non-zero probability. This correction, while
adding no computational cost, reduces the bias without changing variance. As a
result, the Miller-Madow estimator is often preferred to the naive empirical entropy
estimator.

1.6.2 Assuming Normally Distributed Variables

Another way to deal with continuous variables without discretizing variables and
decreasing the computational cost, is to assume that variables follow a well known
probability distribution, such as the Gaussian one.

Let X be a multivariate Gaussian, having a density function,

1 1 Ty, —1
X)= ——— epp—2@—p) VT (@—p) (1.40)
f(X) T

with mean p and covariance matrix V.
The (differential) entropy of this distribution is [10]

H(X) = %m{(zm)ﬂw} (1.41)

where |V| is the determinant of the covariance matrix [10].
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As a result, the mutual information between two normal distributions is given by
[22]

1 043044

where o;; and o;; are the standard deviations of X; and X; respectively. Hence
1
(X, X)) = -5 log(1 — p?) (1.43)

with p being the Pearson’s correlation [26] between X; and X;. Note that the
complexity of estimating 52 is O(m), whith m is the number of samples.

1.7 CONCLUSIONS

Variable selection algorithms are mostly composed of two parts: a search strategy and
an evaluation function. In the case of information-theoretic filters a third component
is given by the mutual information estimator. In this chapter we have introduced
eight different information-theoretic evaluation functions together with three heuris-
tics searches and two mutual information estimators. The three sequential heuristics
searches introduced, namely the forward, the backward and the bi-directional selec-
tion, share with the two mutual information estimators, the empirical and the gaussian,
a low computational cost coupled with a growing literature of good empirical results.
Having a low computational cost is critical in large datasets such as microarray data
where the number of subset combinations is very high. An additional requirement
brought by typical expression datasets is the ability to deal with a low number of
samples. Most of the selection criteria presented here use combinations of only bi-
and trivariate probability distributions in order to reduce the effect of the curse of
dimensionality. Indeed, the latter require exponentially more samples for estimating
larger joint distribution. Finally we a have introduced the notion of relevance, redun-
dancy and synergy out of an information-theoretic framework in order to understand
and compare each method’s ability to combine those bi- and trivariate distributions
in an efficient setting.
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